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2
4 Root Finding Problems

Many problems in Science and Engineering are expressed as:

0)(such that      value thefind

 ,function   continuous  aGiven  

=rfr

f(x)

These problems are called root finding problems.
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2
4 False Position Method

▪ If a real root is bounded by xl and xu of f(x)=0, then we 

can approximate the solution by doing a linear 

interpolation between the points [xl, f(xl)] and [xu, 

f(xu)] to find the xr value such that l(xr)=0, l(x) is the 

linear approximation of f(x).
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2
4 Open Methods

▪ For the bracketing methods which is discussed in previous 

lecture, the root is located within an interval prescribed by a 

lower and an upper bound. Repeated application of these 

methods always results in closer estimates of the true value of 

the root. Such methods are said to be convergent because they 

move closer to the truth as the computation progresses.
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2
4 Open Methods

▪ In contrast, the open methods described in this lecture are based on 

formulas necessarily bracket the root. As such, they sometimes diverge 

or move away from the true root as the computation progresses (Fig. b). 

However, when the open methods converge (Fig. c), they usually do so 

much more quickly than the bracketing methods.

▪ We will begin our discussion of open techniques with a simple version 

that is useful for illustrating their general form and also for 

demonstrating the concept of convergence.
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2
4 Simple Fixed Point Iteration

• Also known as one-point iteration or successive substitution

• To find the root for  = 0, we reformulate  = 0 so that there is an x on one side of the 
equation.

• If we can solve  = x, we solve  = 0.
– x is known as the fixed point of g(x).

• We solve g(x) = x by computing

until xi+1 converges to x.

𝒇(𝒙) = 𝟎 ⇔ 𝒈(𝒙) = 𝒙

𝒙𝒊+𝟏 = 𝒈(𝒙𝒊) with 𝒙𝟎 given

https://manara.edu.sy/
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2
4 Simple Fixed Point Iteration
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Reason: If x converges, i.e. xi+1 → xi
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2
4 Simple Fixed Point Iteration

• Example : Use simple fixed-point iteration to 
locate the root of f(x) = e-x – x.

• Solution: The function can be separated 
directly and expressed in Equation as:
 𝒙𝒊+𝟏 = 𝒆−𝒙𝒊 . Starting with an initial guess of 
𝒙𝒊 =0, the iterative equation can be applied to 
compute:

i xi εa (%) εt (%)

0 0 100.0

1 1.000000 100.0 76.3

2 0.367879 171.8 35.1

3 0.692201 46.9 22.1

4 0.500473 38.3 11.8

5 0.606244 17.4 6.89

6 0.545396 11.2 3.83

7 0.579612 5.90 2.20

8 0.560115 3.48 1.24

9 0.571143 1.93 0.705

10 0.564879 1.11 0.399

Thus, each iteration brings the estimate closer to 
the true value of the root: 0.56714329.
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2
4 Newton Raphson Method

• Given an initial guess of the root x0, Newton-Raphson method uses information about the 
function and its derivative at that point to find a better guess of the root.

• Based on Taylor series expansion:
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Newton-Raphson formula

Solve for
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2
4 Newton Raphson Method

• Graphical Depiction:  If the initial guess at the root is xi, then a tangent to the function of xi 
that is f’(xi) is extrapolated down to the x-axis to provide an estimate of the root at xi+1.

A convenient method for functions whose derivatives can be evaluated analytically. 
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2
4 Newton Raphson Method

• Example: Use the Newton-Raphson method to  estimate the root of f(x) = e-x – x, 

employing an initial guess of 𝒙𝟎 =0

• Solution: The first derivative of the function can be evaluated as: f’(x) = -e-x – 1 which 

can be substituted along with the original function: 𝒙𝒊+𝟏 = 𝒙𝒊 −
𝒆−𝒙𝒊–𝒙𝒊

𝒆−𝒙𝒊–𝟏

Starting with an initial guess of 𝒙𝟎 =0, the iterative equation can be applied to compute:

https://manara.edu.sy/
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2
4 Pitfalls of Newton Raphson Method
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It may not be convenient for functions whose derivatives cannot be evaluated analytically.
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2
4 The Secant Method

▪ A slight variation of Newton’s method for functions whose derivatives are difficult to 
evaluate. For these cases the derivative can be approximated by a backward finite divided 
difference.
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2
4 The Secant Method - Derivation
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Figure 2 Geometrical representation of  the Secant method.

The secant method can also be derived from geometry:

can be written as

On rearranging, the secant method is given as
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2
4 The Secant Method

• Example: Use the secant method to  estimate the root of f(x) = e-x – x, start with initial 
estimates of 𝒙−𝟏 = 𝟎 and 𝒙𝟎 = 𝟏. 𝟎

• Solution:
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2
4 Homework

Problem Statement: Determine the highest real root of:

 𝒇 𝒙 = −𝟔 + 𝟏𝟕. 𝟓𝒙 − 𝟏𝟏. 𝟔𝒙𝟐 + 𝟐. 𝟏𝒙𝟑

a) Graphically.

b) Fixed Point iteration method (three iterations, x0=3). 

c) Newton Raphson method (three iterations, x0=3).

d) Secant method (three iterations, x-1=3 , x0=4).

Compute the approximate percent relative errors for your solutions.
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